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Figure 1. Existing methods that regress 3D human pose and shape (HPS) from an image (like HMR2.0 [12]) estimate bodies that are either
image-aligned or have accurate 3D pose, but not both. We show that this is a fundamental trade-off for existing methods. To address this
our method, TokenHMR, introduces a novel loss, Threshold-Adaptive Loss Scaling (TALS), and a discrete token-based pose representation
of 3D pose. With these, TokenHMR achieves state-of-the-art accuracy on multiple in-the-wild 3D benchmarks.

Abstract

We address the problem of regressing 3D human pose
and shape from a single image, with a focus on 3D ac-
curacy. The current best methods leverage large datasets
of 3D pseudo-ground-truth (p-GT) and 2D keypoints, lead-
ing to robust performance. With such methods, however,
we observe a paradoxical decline in 3D pose accuracy with
increasing 2D accuracy. This is caused by biases in the
p-GT and the use of an approximate camera projection
model. We quantify the error induced by current camera
models and show that fitting 2D keypoints and p-GT ac-
curately causes incorrect 3D poses. Our analysis defines
the invalid distances within which minimizing 2D and p-GT
losses is detrimental. We use this to formulate a new loss,
“Threshold-Adaptive Loss Scaling” (TALS), that penalizes
gross 2D and p-GT errors but not smaller ones. With such a
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loss, there are many 3D poses that could equally explain the
2D evidence. To reduce this ambiguity we need a prior over
valid human poses but such priors can introduce unwanted
bias. To address this, we exploit a tokenized representation
of human pose and reformulate the problem as token predic-
tion. This restricts the estimated poses to the space of valid
poses, effectively improving robustness to occlusion. Exten-
sive experiments on the EMDB and 3DPW datasets show
that our reformulated loss and tokenization allows us to
train on in-the-wild data while improving 3D accuracy over
the state-of-the-art. Our models and code are available for
research at https://tokenhmr.is.tue.mpg.de.

1. Introduction
We address the problem of regressing 3D human pose
and shape (HPS) from a single image. Recent meth-
ods [3, 12, 32, 49] are increasingly accurate on this task.
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By accurate, we mean two things. A method should cor-
rectly regress the 3D pose but it should also align with the
image evidence. Unfortunately, current models cannot do
both. We observe a seeming paradox, that the more accu-
rate a method is on fitting 2D keypoints, the less accurate it
is at predicting 3D pose. We study this problem and identify
the common weak-perspective camera assumption as a key
culprit. This camera model does not match the true cam-
era used to acquire the images and thus there is a mismatch
between the projected 3D joints and the detected 2D ones.
Since currently, no reliable method exists to estimate cam-
era parameters from single image, we study and quantify
this effect and propose two solutions to address it.

Specifically, we use the synthetic BEDLAM [3] dataset,
which has perfect 3D and 2D groundtruth (GT). We project
the 3D data into 2D using the camera model from [12] to
quantify the 2D error in the best case; it is large. We then
also go the other direction and show that low 2D error can
result in large 3D error. Even using a full perspective model
like [32] does not solve the problem since we lack the pre-
cise intrinsic and extrinsic camera parameters.

This analysis highlights the issue of supervising 3D pose
regression with a 2D keypoint loss. But such a loss opens
up access to large datasets, providing generalization and ro-
bustness. Unfortunately, pseudo ground-truth (p-GT) train-
ing data suffers the same problem since it is generated by fit-
ting a 3D body to 2D data via optimization using an approx-
imate camera model. How can we leverage the abundant in-
formation present in large-scale, in-the-wild, datasets while
mitigating the decline in 3D accuracy? Our answer to this
is TokenHMR, a new HPS regression method that strikes a
balance between effectively leveraging 2D keypoints while
maintaining 3D pose accuracy, thus leveraging Internet data
today without known camera parameters.

TokenHMR has two main components. The first is
based on our key insight that supervision from 2D key-
points, while flawed, is valuable for preventing highly in-
correct predictions. However, excessive reliance on 2D
cues introduces bias. To address this, we define a new loss
called Threshold-Adaptive Loss Scaling (TALS) that penal-
izes large 2D and p-GT errors but only minimally penalizes
small ones. We use our BEDLAM analysis to define this, so
that the network is not encouraged to fit 2D keypoints more
accurately than makes sense given the camera model.

This, however, creates a new problem. Predicting
3D pose from 2D keypoints is fundamentally ambiguous.
When one relaxes the keypoint matching constraint, even
more 3D poses are consistent with the 2D data. To control
this, we need to introduce a prior that biases the network
to valid poses. Unfortunately, existing pose priors based on
mixtures of Gaussians [4] or VAEs [42] are biased towards
poses that occur frequently in the training data. Instead, we
seek an unbiased prior that restricts the network to only out-

put valid poses but does not bias it to any particular pose.

This leads us to the second key component of To-
kenHMR, which gives it its name. Specifically, we convert
the problem of continuous pose regression into a problem
of token prediction by tokenizing human poses. We use a
Vector Quantized-VAE (VQ-VAE) [53] to discretize con-
tinuous human poses by pre-training on extensive motion
capture datasets, such as AMASS [37] and MOYO [52].
This tokenized representation provides the regressor with
a “vocabulary” of valid poses, effectively representing the
the pose prior as a knowledge bank, codebook. Since VQ-
VAE’s are designed to represent a uniform prior, we posit
that this reduces the biases caused by previous pose priors.

TokenHMR generates discrete tokens through classifi-
cation, in contrast to regressing continuous pose. When
we take a SOTA HPS method and replace the continuous
pose with our tokenized pose approach we see consistent
improvements in 3D accuracy (all else held the same).

We perform extensive experiments to evaluate different
ways of tokenizing pose and their effects on accuracy. Any
discretization of pose comes with some loss in accuracy. In
our case it results in a loss of 3D accuracy of about 2.5mm,
which is 20 times smaller than the accuracy of the state-of-
the-art (SOTA) HPS regressors on real data; i.e., the loss in
accuracy due to tokenization is negligible.

Finally, we put our two components together and find
that they work synergistically. Our new loss does not dis-
tort the 3D pose to over-fit the keypoints or p-GT and the
tokenization keeps the network from distorting 3D pose
for the sake of 2D accuracy. With this combination, we
achieve a new state-of-the-art in terms of 3D accuracy. We
extensively evaluate TokenHMR and other recent meth-
ods on EMDB [23] and 3DPW [55], which have accu-
rate 3D ground truth. Using the same data and backbone,
TokenHMR exhibits a 7.6% reduction in 3D error compared
to HMR2.0 [12] on the challenging EMDB dataset. Qual-
itative results suggest that the TokenHMR is robust to am-
biguous image evidence and the estimated poses do not suf-
fer from the “bent knees” bias of methods that use p-GT and
2D keypoints (see Fig. 1).

In summary, we make the following key contributions:
(1) Analysis of 3D Accuracy Degradation: We analyze
and quantify the trade-off between 3D and 2D accuracy
that current HPS methods face if they use 2D losses. (2)
Threshold-Adaptive Loss Scaling: To ameliorate the issue,
we develop a novel loss function that reduces the influence
of 2D and p-GT errors that are less than the expected error
due to the incorrect camera model. (3) Token-Based Pose
Representation: We introduce a token-based representation
for human pose and show that it produces more accurate
pose estimates. Our models and code are available for re-
search.
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2. Related Work

2.1. HPS Regression

Estimating 3D human pose and shape from single images
has been studied in great detail from optimization-based ap-
proaches to the most recent transformer-based regressors.
Optimization approaches fit a parametric model [36, 42, 59]
to 2D image cues, including, but not limited to keypoints [4,
42, 59], silhouettes [41], and part segmentations [30]. Some
learning-based approaches directly estimate the parametric
body model from images [6, 8, 9, 21, 25, 32, 48, 49, 61]
and videos [22, 24] and some estimate bodies with a model-
free approach either as vertices [28, 34, 46] or as implicit
shapes [39, 45, 58]. Recent methods [12, 33] use transform-
ers to estimate 3D bodies, achieving the current best accu-
racy. To address the challenges of generalization, recent
methods like EFT [20], NeuralAnnot [40], HMR2.0 [12]
and CLIFF [32] use 2D keypoints and p-GT in the training
loss, to produce a good alignment between the projected
body and the image. Methods like HuManiFlow [47] and
POCO [9] model probabilistic HPS to explicitly address
pose ambiguity. The problem of 3D accuracy degradation
in pursuit of better 2D alignment has been noted but not
extensively quantified before our work. Our statistical anal-
ysis highlights this bias in existing HMR methods, offering
a new perspective on training strategies for this problem.

Some methods [26, 32, 56] address the 3D-to-2D pro-
jection error by estimating the camera from a single image.
SPEC [26] uses a network to predict camera parameters but
does not generalize well, while CLIFF [32] uses an approxi-
mation by providing the network with information about the
bounding box coordinates of the person in the image. Esti-
mating the camera from a single image is highly ill-posed
so this remains a challenging, unsolved, problem. Our ap-
proach reduces the impact of using the wrong camera model
and can be applied to any HPS regression method.

2.2. Pose Prior

Human pose priors play a pivotal role in various applica-
tions like lifting 2D pose to 3D [4, 42] and estimating hu-
man pose from images/videos [20, 29]. Early pose priors
focus on learning joint limits [1] to avoid poses that are im-
possible. Gaussian Mixture Models (GMMs) [4] and Gen-
erative Adversarial Networks (GANs) [11, 21] are also used
to impose prior knowledge during training. Some recent
methods use VAEs [42] and normalizing flows [29] as pri-
ors. Many of these methods are biased to commonly occur-
ring poses and this bias is passed on the regressor. Methods
like Pose-NDF [51] learn a manifold of plausible poses rep-
resented as the zero-level set of a neural implicit function.
The mapping of invalid to valid poses involves gradient de-
scent, which is an expensive operation when integrated in
HPS training. In contrast to prior work, we learn a dis-

Figure 2. Visualization of the camera/pose bias issues. (a) The
lack of correct focal length means that foreshortened legs are es-
timated as bent by methods like HMR2.0. (b) Replacing the pre-
dicted body poses with ground truth reveals camera bias; (c) Main-
taining 2D alignment, how wrong can the 3D poses be? See Sec. 3
for details.

crete token-based prior over valid SMPL poses, reducing
pose bias and improving robustness to occlusion, while be-
ing easy to integrate into HPS training.

We use a VQ-VAE [53], which is a variant of VAEs,
to learn a discretized prior by quantizing the 3D training
poses in a process called “Tokenization” creating a knowl-
edge bank i.e. codebook. Tokenization is widely used in
various applications like image synthesis [44, 53], text-to-
image generation [43], 2D human pose estimation [10],
and learning motion priors [18, 62]. In the context of hu-
man pose estimation, tokenization remains relatively unex-
plored, though it is widely used in human motion generation
[14, 62]. Of course, tokenized representations of images
and language are widely used for many vision and language
problems. Our approach is novel in that it reformulates the
regression problem as a pose token classification problem.
It thus exploits tokenization to represent valid poses, effec-
tively providing a pose prior.

3. Camera/pose Bias
Methods that estimate 3D HPS typically try to satisfy two
goals: accurate 3D pose and accurate alignment with 2D
image features. Unfortunately, we observe a trend in all
experiments – the better a method does on 2D error, the
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worse it does on 3D and vice versa. The key reason for
this is that current methods, including those tested here,
do not estimate the camera intrinsic parameters (e.g. focal
length) or the camera extrinsics (rotation and translation).
Instead, current methods estimate the person in camera co-
ordinates using scaled orthographic projection or perspec-
tive projection with fixed and incorrect camera parameters.
This results in a mismatch between the true 3D joints and
their 2D projection. Specifically, since photos are typically
taken from roughly eye height, the legs are further away
than the upper body. This causes them to be foreshortened.
Training models to minimize 2D error forces them to gen-
erate incorrect poses in 3D; this is illustrated in Fig. 2 (a).
Pseudo ground truth (p-GT) for 2D pose datasets is obtained
by minimizing the 2D error with problematic camera pa-
rameters. Fully trusting such p-GT and pursuing accurate
learning of such annotations will make the problem more
prominent. Notice how foreshortening makes the legs ap-
pear shorter in the image. The only way to make a human
body fit this is to bend the legs at the knees or tilt the body in
3D, making the legs further away. This produces unnatural
or unstable poses.

This is a fundamental issue with all current methods and
one cannot get low error for both 3D and 2D without know-
ing the camera. To numerically evaluate the impact of this
mismatch, we employ BEDLAM [3], a synthetic dataset
where both 3D and 2D data are known exactly along with
the camera. This removes any possible noise and allows
us to see the effects of using the wrong camera on 2D pro-
jection error. Specifically, as shown in Fig. 2 (b), we take
ground truth BEDLAM bodies and project them into the
image using the camera of HMR2.0 [12].

We evaluate the effect of the incorrect camera in 2D
using the standard measure of Percentage of Correct Key-
points (PCK), which we compute for a sequence from the
BEDLAM validation set. The 3D bodies computed by
HMR2.0b have errors of 0.78 on PCK0.5 and 0.88 on
PCK1.0. In contrast, when we use the HMR2.0b camera
with the ground truth 3D bodies, the PCK scores decrease
to 0.66 on PCK0.5 and 0.86 on PCK1.0. Ideally, with a cor-
rect camera model, both PCK0.5 and PCK1.0 should reach
1.0. The fact that HMR2.0b achieves lower error than the
ground truth indicates that its output deviates from the true
3D pose and shape due to camera bias. This demonstrates
that methods like HMR2.0b, while obtaining high PCK val-
ues, do so at the expense of 3D accuracy. In summary, seek-
ing high PCK values is counterproductive to 3D accuracy
unless one has the correct camera model.

We further design experiments to explore how bad the
3D error can be while maintaining good 2D alignment. We
modify the loss function of SMPLify [4] to keep the dis-
tance between predicted 2D keypoints and GT 2D keypoints
J2Dg close, while adding a new loss to increase the dis-

tance between predicted 3D keypoints J3D and real 3D
keypoints J3Dg , as expressed in the following equation:

w2D||Π(J3D,T )− J2Dg ||2 − w3D||J3D − J3Dg ||2 +m
(1)

where Π represents 3D-to-2D projection using HMR2.0’s
camera, m = 20 is the margin value, w2D = 4 and
w3D = 40.5 are scalar weights. After 100 iterations of
optimization, the Mean Per Joint Position Error (MPJPE)
reaches 146mm. As shown in Fig. 2 (c), the projected 3D
pose can still maintain a high degree of 2D alignment even
with significant errors in the depth direction. When opti-
mized for 200 iterations, the MPJPE exceeds 300mm, and
the error continues to increase with further optimization.

Since the field does not currently have a reliable way to
estimate the camera parameters from a single image, be-
low we explore the ability of our new methods (TALS and
tokenization) to help mitigate the issues caused by approx-
imate camera models. Figure 2 (a) compares results from
HMR2.0 and TokenHMR. Note that the effect of foreshort-
ening has less impact on pose with TokenHMR.

4. TokenHMR
4.1. Preliminaries

Our method, TokenHMR, takes an input image, I , and out-
puts body pose, θ, shape, β and perspective camera, T . We
use SMPL [36], a differentiable parametric body model. Its
input parameters consist of pose, denoted by θ ∈ R72 and
shape, denoted as β ∈ R10. As output, it produces a body
mesh, M, and vertices, V ∈ RNX3, where N = 6890 is
the number of vertices. 3D joints denoted as J3D, are de-
rived through a linear combination of mesh vertices using a
pre-trained joint regressor.

4.2. Threshold-Adaptive Loss Scaling: TALS

In Section 3, our analysis reveals a notable impediment
to the effective learning using pseudo-ground-truth and
2D keypoints—camera/pose bias. Despite this challenge,
the scale provided by such annotations remains integral to
achieving optimal generalization and robustness. We assert
that, when appropriately utilized, without over-fitting, these
annotations significantly enhance the model’s ability to ro-
bustly estimate pose. A key insight emerges from our ob-
servations: establishing an effective threshold is imperative
to discern the error levels that yield no additional benefit as
a training signal. When the loss surpasses this threshold,
conventional learning mechanisms guide pose estimation.
Conversely, when the loss falls below this effective thresh-
old, we minimize its impact to prevent over-fitting to the
camera/pose bias.

To determine this effective threshold, we analyze the er-
rors obtained using ground truth (GT) 3D poses and a stan-
dard (incorrect) camera model. Again we leverage the 3D
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Figure 3. Framework overview. Our method has two stages. (a) In the tokenization step, the encoder learns to map continuous poses
to discrete pose tokens and the decoder tries to reconstruct the original poses. (b) To train TokenHMR, we replace regression with
classification using the pre-trained decoder, which provides a “vocabulary” of valid poses.

GT in BEDLAM [3], this time to establish effective thresh-
olds for both 2D keypoints and SMPL pseudo-ground-truth.
For 2D keypoints, we replace the predicted SMPL parame-
ters with ground truth values from BEDLAM to obtain the
real 3D human body’s 2D keypoint projections under the
HMR2.0 camera. We then calculate the mean L1 norm
between these projections and the GT 2D keypoints, and
use this as the threshold εJ2D for 2D keypoint supervision.
We normalize these 2D keypoints relative to image width
and scale the values between -0.5 and 0.5 to mitigate scale-
related variances.

Similarly, to establish the effective supervision thresh-
old for SMPL p-GT, we conduct additional experiments.
With p-GT, we formulate the pose loss in terms of joint an-
gle error. To set appropriate thresholds on these errors, we
evaluate the difference in joint angles between HMR2.0’s
predictions on BEDLAM and the ground truth values for
each joint in the SMPL model. Specifically, we compute
the mean geodesic distance* between the 3D joint rotations
on the manifold of rotations in SO(3) predicted by HMR2.0
and the ground-truth rotations in BEDLAM. Please refer to
Sec. B.2 in Sup. Mat. for specific threshold values.

After establishing the effective thresholds for 2D key-
points and SMPL p-GT, we introduce a new loss called
Threshold-Adaptive Loss Scaling (TALS). It scales down
the loss only when it goes below the threshold. Specifi-
cially, the TALS loss terms for p-GT pose and 2D joints are
defined as

LθpGT =

{
∥θ − θg∥2 if LθpGT > εθ

αθ · ∥θ − θg∥2 otherwise
(2)

LJ2DpGT
=

{
|J2D − J2Dg | if LJ2DpGT

> εJ2D

αJ2D
· |J2D − J2Dg | otherwise

(3)
where αJ2D

and αθ are small scalar multipliers and εθ is
the threshold calculated separately for each pose parameter
and εJ2D is the threshold for 2D joints.

*https://rotations.berkeley.edu/geodesics-of-
the-rotation-group-so3/

4.3. Tokenization

We use a VQ-VAE [53], which learns an encoding of 3D
pose in a discrete representation. Specifically, we learn a
discrete representation for SMPL body parameters, θ =
[θ1, θ2, . . . , θ21], where the θi represent each joint’s pose
parameters in R6. The process involves encoding and de-
coding the pose parameters using an autoencoder architec-
ture and a learnable codebook, denoted as CB = {ck}Kk=1,
with each code ck ∈ Rdc , where dc is the dimension of
the codes. The overall architecture of the Pose VQ-VAE is
illustrated in Fig. 3 (a). The encoder and decoder of the au-
toencoder are represented by E and D, respectively. The
encoder is responsible for generating discrete pose tokens,
while the decoder reconstructs these tokens back to SMPL
poses. The latent feature z can be computed as z = E(θ),
resulting in z = [z1, z2, . . . , zM ], where zi ∈ Rdc and M
is the number of tokens. Each latent feature zi is quantized
using the codebook CB by finding the most similar code
element, as expressed in the following equation:

ẑi = argmin
ck∈CB

∥zi − ck∥2. (4)

In training the pose tokenizer, we adopt a strategy similar
to previous work [53], which involves three primary loss
functions to optimize the tokenizer: the reconstruction loss
(LRE ), the embedding loss (LE ), and the commitment loss
(LC). The overall loss (LVQ) is defined as

LVQ = λRELRE + λELE + λCLC

= λRELRE + λE ||sg [z]− e||2 + λC ||z − sg [e]||2
(5)

where sg is the stop gradient operator, e is the embed-
ding from the codebook and λRE , λE , λC are the hyper-
parameters of for each term. For reconstruction, we use
an L1 loss between the ground-truth pose, θg , and pre-
dicted pose, θ and also on the error between the SMPL
ground-truth 3D joints, J3Dg and predicted joints, J3D. So,
the LRE loss is defined as

LRE = L1(θg,θ) + L1(J3Dg ,J3D). (6)
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The original VQ-VAE suffers from codebook collapse,
i.e. the codebook is not fully utilized. Following prior
work [62], we use the training strategy of exponential mov-
ing average (EMA) and codebook reset (Code Reset) for
better utilization.

4.4. Architecture

Our architecture exploits the Vision Transformer (ViT) [7],
similar to HMR2.0 [12]. The input image, I , is first trans-
formed into input tokens, which are subsequently processed
by the transformer to generate output tokens. These out-
put tokens then undergo further processing in the trans-
former decoder. The transformer decoder has multi-head
self-attention that cross-attends a zero input token with an
image output token to get features from the transformer
block. In contrast to HMR2.0 [12], which employs three
linear layers to map the features from transformer block to
the SMPL pose, θ, shape, β and camera, T , we propose
a novel approach. Our objective is to leverage a tokenizer
trained on a significant amount of motion capture (mocap)
data, specifically focusing on body pose. To facilitate this,
we partition the SMPL pose parameters into body pose and
global orientation. We use separate linear layers to predict
the global orientation and body pose from the tokenizer.

A straightforward integration of the tokenizer would in-
volve estimating the code index directly from the ViT trans-
former backbone and selecting embeddings, e, based on the
code index from the codebook, CB . However, this poses
a challenge as the process of selecting an embedding from
the codebook, is non-differentiable. To address this issue,
we adopt a logit-based approach. Instead of directly esti-
mating the code index, we output logits, Q for each token.
These logits are multiplied with the codebook, resulting in
weighted embeddings. Thus, the approximated quantized
feature z̄ = [z̄1, z̄2, . . . , z̄M ] can be calculated as

z̄ = σ(QM×K)×CBK×D ≈ ẑ (7)

where, Q are the logits estimated by the backbone, σ is the
softmax operation, CB is the pretrained codebook, M is
the number of tokens, K is the number of entries in the
codebook and D is the dimension of each codebook en-
try. The operation makes it differentiable. The obtained ap-
proximated quantized features, z̄ are subsequently passed
through the tokenizer decoder. This process yields the fi-
nal pose. In the training of TokenHMR, the learned tok-
enizer decoder is frozen to take advantage of the prior it has
learned from mocap data.

4.5. Losses

Following prior work [12, 25], we define losses on 2D and
3D joints and SMPL pose and shape parameters, i.e. on
J2D, J3D, θ, β, respectively. However, following the anal-
ysis in Sec. 4.2, we treat data from 2D and 3D datasets dif-

ferently. For 3D ground-truth datasets, we define the stan-
dard loss as

LGT = λθLθ(θ,θg) + λβLβ(β,βg)+

λ3DL3D(J3D,J3Dg ) + λ2DL2D(J2D,J2Dg )
(8)

where Lβ is a SMPL shape loss, LJ3D
is the 3D

joint loss and LJ2D
is the joint re-projection loss.

λβ , λ3D and λ2D are steering weights for each term.
To learn from SMPL pseudo-ground-truth, we use
Threshold-Adaptive Loss Scaling (TALS) where we scale
the loss based on the threshold computed in Sec. 4.2, out-
lined in Eqs. 2 and 3. Thus, the total loss is defined as

LTotal = LGT + LθpGT
+ LJ2DpGT

. (9)

5. Experiments
5.1. Implementation Details

Training of TokenHMR involves two stages: first we train
a tokenizer to learn discrete pose representations using
AMASS [37] and MOYO [52] mocap data. Then we use the
pretrained decoder of the tokenizer as an additional head for
regressing body pose. During the training of TokenHMR,
the tokeniser is frozen to exploit the prior.

Our tokenizer architecture is inspired from T2M-
GPT [62] but instead of learning motion tokens of 3D joints
we learn pose tokens of SMPL pose parameters. We use 1
ResNet [15] block and 4 1D convolutions both in the en-
coder and decoder. The steering weights λRE , λE , λC are
set at 50.0, 1.0, 1.0, respectively. The model is trained for
150K iterations with batch size of 256 and learning rate of
2e−4. To train a robust model, we augment random joints
with noise starting from 1e−3, which we progressively in-
crease after every 5K iterations. We choose the best tok-
enizer model containing 160 tokens and codebook of size
2048 × 256 for TokenHMR based on reconstruction error
on the validation set.

For TokenHMR, we use ViT-H/16 [7] as the back-
bone and standard transformer decoder [54] following
HMR2.0 [12]. We use 4 separate linear layers to map the
features of size 1024 from the transformer decoder to the
global orientation, hand pose, and body shape of SMPL and
one for the camera. However, for body pose, we process the
1024 features through 4 blocks of linear layers, each con-
taining 2 MLPs and an GELU activation function [16]. This
gives the final logits, Q , of size 160× 2048 for multiplica-
tion with a codebook of size 2048 × 256, which results in
approximate quantized features, z̄; see Eq. 4. We use ViT-
Pose [60] as the pretrained backbone. We train for 100K
iterations on 4 Nvidia RTX 6000 GPUs with a batch size
of 256 and learning rate of 1e−5 for about one day. The
steering weights, λθ, λβ , λJ2D

, λJ3D
are set to 1e−3, 5e−4,

1e−2, 5e−2, respectively. The loss weights of TALS is set to
1% for both pose αθ and 2D keypoints αJ2D

.
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Training Method EMDB [23] 3DPW [55]

Datasets MVE MPJPE PA-MPJPE MVE MPJPE PA-MPJPE

SD HybrIK [31] 122.2 103.0 65.6 94.5 80.0 48.8
SD CLIFF [32] 122.9 103.1 68.8 81.2 69.0 43.0
SD HMR2.0 [12] 120.1 97.8 61.5 84.1 70.0 44.5
BL BEDLAM-CLIFF [3] 113.2 97.1 61.3 85.0 72.0 46.6
BL HMR2.0 106.6 90.7 51.3 88.4 72.2 45.1
BL TokenHMR 104.2 88.1 49.8 86.0 70.5 43.8

SD + ITW HMR2.0 [12] 140.6 118.5 79.3 94.4 81.3 54.3
SD + ITW TokenHMR 124.4 102.4 67.5 88.1 76.2 49.3

SD + ITW + BL HMR2.0 120.7 99.3 62.8 88.4 77.4 47.4
SD + ITW + BL HMR2.0 + TALS 115.7 96.7 58.5 89.6 73.5 46.8
SD + ITW + BL HMR2.0 + Token 116.1 95.6 62.2 86.6 75.0 48.0
SD + ITW + BL HMR2.0 + TALS + VPoser [42] 116.8 97.9 56.4 87.1 73.7 45.7
SD + ITW + BL TokenHMR 109.4 91.7 55.6 84.6 71.0 44.3

Table 1. 3D human mesh and pose errors on the EMDB and 3DPW datasets. See text.

Method Crop 30% Crop 50%

MVE MPJPE PA-MPJPE MVE MPJPE PA-MPJPE

HMR2.0 [12] 135.24 (+14.98) 113.39 (+14.13) 70.68 (+7.86) 166.71 (+46.45) 137.88 (+38.59) 90.30 (+27.48)
TokenHMR 124.09 (+14.71) 104.72 (+13.01) 62.13 (+6.52) 150.29 (+40.91) 125.99 (+34.28) 78.88 (+23.27)

Table 2. Impact of evenly cropping images at different ratios from the boundaries on the 3D HPS accuracy on the EMDB dataset. The
numbers in (parentheses) indicate the changes in performance relative to the non-cropped scenario; smaller is better. All models compared
here employ identical backbones and are trained on the same data.

AMASS [37] MOYO [52]

Method MVE ↓ MPJPE ↓ MVE ↓ MPJPE ↓

C
B

1024 × 256 11.5 4.6 27.1 15.7
2048 × 128 9.4 3.1 22.5 12.3
2048 × 256 8.3 2.2 19.9 10.4

To
ke

ns 80 12.5 4.1 24.4 16.7
160 8.3 2.2 19.9 10.4
320 8.1 1.9 19.0 10.1

N
oi

se Yes 8.3 2.2 19.9 10.4
No 7.9 1.9 21.0 11.5

AMASS + MOYO⋆ 8.7 2.6 16.5 7.6

Table 3. Tokenizer Ablation. All methods are trained on the
standard training set of AMASS [37] and evaluated on the test set
of AMASS and validation set of MOYO [52] except the last row⋆,
which is trained with the MOYO training set. The last model is
used as the tokenizer in TokenHMR.

Training Data: For training the tokenizer, we use the
standard training split of AMASS [37] and the training data
of MOYO [52]. For more details on data preparation of
training, please refer to Sup. Mat. Following the prior meth-
ods [12, 25, 27], we use standard datasets (SD) for train-
ing which include Human3.6M [17], MPI-INF-3DHP [38],
COCO [35], and MPII [2]. Additionally, like HMR2.0b,
we also use in-the-wild 2D datasets (ITW) like InstaVari-
ety [22], AVA [13], and AI Challenger [57] datasets and
their p-GT for training. We also include BEDLAM (BL) [3],

a synthetic dataset with accurate ground-truth 3D data. For
a fair comparison, we re-train HMR2.0b using a combina-
tion of the SD, ITW, and BL datasets. We choose HMR2.0b
as a baseline model since the code is open-source and we
can reproduce the results.

Evaluation and Metrics: For the tokeniser accuracy,
we report the Mean Vertex Error (MVE) and Mean Per
Joint Position Error (MPJPE) and evaluate on the standard
test split of AMASS and validation set of MOYO. For To-
kenHMR, we report the Mean Vertex Error (MVE), Mean
Per Joint Position Error (MPJPE), and Procrustes-Aligned
Mean Per Joint Position Error (PA-MPJPE) between the
predictions and the ground-truth. We evaluate on the test
set of the 3DPW [55] and EMDB [23] datasets. The former
is a standard 3D dataset and the latter is a recently released
and more challenging dataset with varying camera motions
and varied 3D poses.

5.2. How to Alleviate the 3D Degradation Problem?

Table 1 shows the performance of the HMR2.0 model
trained solely with the SD dataset and its performance when
trained with both SD and ITW datasets. We observe a sig-
nificant decrease (over 17%) in 3D accuracy on the EMDB
dataset upon the inclusion of the ITW data. At the same
time, according to the Table 2 in HMR2.0 [12] paper,
the ITW data improves the method’s 2D performance. A
straightforward approach to counter this trend could be to
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Figure 4. Qualitative comparisons on challenging poses from the LSP [19] dataset.

integrate more data with precise 3D annotations, such as
BEDLAM [3]. Yet, as Table 1 reveals, even with the in-
clusion of BEDLAM, HMR2.0 (SD+ITW+BL) still suffers
from noticeable 3D metric degradation. This observation
forms our baseline for further investigations.

Employing our novel loss formulation (TALS) results in
notable performance improvement on both the EMDB and
3DPW datasets, indicating its effectiveness in preventing
overfitting to noisy p-GT data. While TALS yields improve-
ments, we delve deeper into exploring pose priors to com-
pensate for the diminished supervision. Our evaluation of
VPoser [42], a prevalent VAE prior in HPS, yields only
marginal improvements, suggesting the need for a more
robust alternative. Our VQ-VAE-based pose tokenization
approach offers greater improvement. TokenHMR signif-
icantly outperforms HMR2.0, with improvements of 9%
in MVE, 7.6% in MPJPE, and 11.5% in PA-MPJPE on
EMDB. Consistent trends are also observed on 3DPW.

5.3. How does the Token-based Prior Help?

Beyond facilitating more effective learning as we discussed
above, we also examine the efficacy of our discrete token-
based prior in scenarios with ambiguous image information,
such as truncation. We evaluate our method under varying
degrees of image cropping on the EMDB dataset. Specif-
ically, we crop 30% and 50% from the image boundaries.
As shown in Table 2, compared with HMR2.0 [12], the per-
formance of our approach decreases less in the challeng-
ing truncation settings (50% v.s. 30%). Furthermore, the
qualitative outcomes, illustrated in Fig. 4, underscore the
robustness of the prior embedded within our token-based
pose representation. This robustness is crucial for handling
real-world scenarios where image truncation is common.

5.4. Ablation Study of Tokenizer

Table 3 presents our ablation study on different tok-
enizer design choices using AMASS’s standard test set and
MOYO’s validation set. To understand the impact of the
design choices on out-of-distribution MOYO data, we train
solely with AMASS and conduct various ablations. The
final tokenizer model (last row in Table 3), however, is

used in TokenHMR and is trained on both the AMASS
and MOYO datasets. Our findings indicate that the num-
ber of codebook entries has a more significant impact than
code dimensions. Although the number of tokens is cru-
cial for an accurate representation, we observe a perfor-
mance plateau, opting for 160 tokens in our final model.
This number strikes a balance between network size and
reconstruction accuracy for TokenHMR. Random augmen-
tation of pose parameters with noise builds a more robust
tokenizer, slightly reducing performance for in-distribution
data but beneficially impacting OOD data.

6. Conclusion
In this paper, we presented a novel approach to 3D human
pose estimation from single images. We begin by identify-
ing and quantifying the problem caused by using a 2D key-
point loss with an incorrect camera model. This leads to a
fundamental tradeoff for current methods – either have high
3D accuracy or 2D accuracy, but not both. Our method,
TokenHMR, addresses this problem with two contributions
that can easily be used by other methods. TokenHMR
adopts a new paradigm for pose estimation based on re-
gressing a discrete tokenized representation of human pose.
We combine this with a new loss, TALS, which mitigates
some of the bias caused by the camera projection error,
and biased p-GT, while still allowing the use of in-the-wild
training data. Our experiments on the EMDB and 3DPW
datasets demonstrate that TokenHMR significantly outper-
forms existing models like HMR2.0 in terms of 3D accu-
racy, even with siginficant occlusion.
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TokenHMR: Advancing Human Mesh Recovery with
a Tokenized Pose Representation

Supplementary Material

A. Introduction

In this supplemental document, we provide more imple-
mentation details and discuss limitations of TokenHMR.
Please refer to the supplemental video for a brief review
of the paper and more qualitative results.

B. More Implementation Details

B.1. Data Preparation for Tokenizer

For pose tokenization, we use 21 body pose parameters
following Vposer [42]. As shown in Tab. 3 of main
paper, we evaluate our tokenization in two settings: in-
distribution and out-of-distribution. For in-distribution,
we train on the training set of AMASS [37] and evaluate
on the test set of AMASS. To show the efficacy of tok-
enization, we also evaluate on an out-of-distribution yoga
dataset, MOYO [52]. For training, we use the following
datasets: {CMU, KIT, BMLrub, DanceDB, BMLmovi,
EyesJapan, BMLhandball, TotalCapture, EKUT,
ACCAD, TCDHands, MPI-Limits} with a weighting of
{0.14, 0.14, 0.14, 0.06, 0.06, 0.06, 0.06, 0.06, 0.04, 0.04, 0.04,
0.16}, respectively.

B.2. Joint-wise Thresholds for TALS

To establish effective joint-wise thresholds for TALS (Sec. 4.2),
we conducted a detailed statistical analysis on the 20221018 3-
8 250 batch01hand 6fps validation subset of the BEDLAM [3]
dataset, encompassing over 34k samples of diverse human 3D
pose, shape, and camera perspectives. Table S.1 presents the
threshold distances for each joint used by TALS.

B.3. Augmentations

Data augmentation plays a pivotal role in enhancing the robustness
and generalization capabilities of HPS regressors. Hence, follow-
ing HMR2.0, we perform various augmentations. These include
random translations in both x and y directions with a factor of
0.02, scaling with a factor of 0.3 and rotations with 30 degrees.
Other augmentations include horizontal flipping and color rescal-
ing. We observe that extreme cropping i.e. removing part of the
human body limb in random also improves the robustness to oc-
clusion.

C. Discussion
C.1. Pose Space Analysis

We analyse the pose space by evaluating reconstruction of OOD
poses that are not present in the training set. We do this by train-
ing on AMASS and testing on MOYO. The qualitative result is

2D Joints Threshold SMPL Joints Threshold

OP Nose 0.00850 Pelvis 0.46
OP Neck 0.00649 LHip 0.22
OP RShoulder 0.00748 RHip 0.21
OP RElbow 0.01103 Spine 0.15
OP RWrist 0.01356 LKnee 0.33
OP LShoulder 0.00742 RKnee 0.30
OP LElbow 0.01097 Thorax 0.17
OP LWrist 0.01414 LAnkle 0.20
OP MidHip 0.00974 RAnkle 0.27
OP RHip 0.01127 Thorax 0.12
OP RKnee 0.01663 LToe 0.29
OP RAnkle 0.00565 RToe 0.28
OP LHip 0.01126 Neck 0.24
OP LKnee 0.01616 LCollar 0.26
OP LAnkle 0.00533 RCollar 0.26
OP REye 0.00830 Jaw 0.28
OP LEye 0.00831 LShoulder 0.29
OP REar 0.00737 RShoulder 0.32
OP LEar 0.00743 LElbow 0.35
OP LBigToe 0.00544 RElbow 0.35
OP LSmallToe 0.00551 LWrist 0.62
OP LHeel 0.00536 RWrist 0.59
OP RBigToe 0.00565 LHand 0.20
OP RSmallToe 0.00582 RHand 0.20
OP RHeel 0.00573
LSP RAnkle 0.00554
LSP RKnee 0.01515
LSP RHip 0.00986
LSP LHip 0.00998
LSP LKnee 0.01520
LSP LAnkle 0.00511
LSP RWrist 0.01288
LSP RElbow 0.01106
LSP RShoulder 0.00711
LSP LShoulder 0.00710
LSP LElbow 0.01092
LSP LWrist 0.01388
LSP Neck 0.00648
LSP Head Top 0.00766
MPII Pelvis 0.00931
MPII Thorax 0.00647
H36M Spine 0.00677
H36M Jaw 0.00744
H36M Head 0.00752

Table S.1. Thresholds for 44 2D joints and 24 SMPL joints.
2D joint names start with the skeleton origin, where OP stands
for OpenPose [5]. LSP [19], MPII [2], and H36M [17] are the
datasets.

shown in Fig. S.1 which shows good generalization to the out-of-
distribution yoga poses from MOYO [52]. In contrast, we find that
noisy test poses are not well recovered.
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Figure S.1. t-SNE visualization of unseen poses (3D body joints)
reconstructed by our tokenizer trained on AMASS only. We
are able to reconstruct the out-of-distribution Yoga poses from
MOYO. GT is ground-truth poses and PR is predicted poses.

C.2. TALS loss vs Filtering Strategy
Similar to HMR2.0, we employ filtering strategies to ensure high-
quality 2D image alignment of the p-GT. Filtering strategies, how-
ever, are “all or nothing”; i.e. data samples are either rejected or
considered. Our TALS loss is different in that it uses all the filtered
pseudo-ground-truth samples up to a threshold, after which the su-
pervision is scaled down. This goes beyond standard filtering and
data cleaning pipelines.

D. Limitation Discussion
D.1. Poor 2D Alignment under Weak-perspective

Camera Model
The experimental analysis in Sec. 3 shows that using existing
flawed camera projection models results in overfitting to 2D key-
points and that this leads to learning biased poses. To avoid this
issue, we design a lenient TALS supervision training strategy and
incorporate prior knowledge through our token-based pose repre-
sentation. As shown in Fig. S.2 a), with the combination of loose
2D supervision using TALS and built-in prior in representation,
TokenHMR is able to estimate reasonable 3D poses but these do
not always align well in 2D image when there is foreshortening.
As expected under the weak-perspective camera model, the more
obvious the perspective distortion, the worse the 2D alignment.

D.2. Failure Cases
In this work, we introduce TokenHMR to reduce camera/pose bias
and alleviate the ambiguity with a tokenized pose prior. How-
ever, TokenHMR still has some limitations that could be further
explored in future work.

As shown in Fig. S.2 b), foreshortening remains challenging
without a better camera model. In cases like Fig. S.2 c), the global
orientation is ambiguous when only considering body cues. We
may need to exploit more cues from the face and the feet to de-
termine the correct global orientation. Future work could try to
extend TokenHMR to full-body pose estimation (i.e. SMPL-X) to
address this issue.

E. Future Work
Future work should, obviously, address the camera projection
problem directly by recovering more accurate camera estimates.

a) Due to the loose supervision of TALS, our prediction does not 
align well in 2D under weak-perspective camera.

b) Depth-wise ambiguity is still very challenging. 

c) Global orientation estimation sometimes fails because facial 
and foot cues are not thoroughly explored.

Figure S.2. 2D alignment problem and failure cases.

Even with such improvements, we anticipate that the token rep-
resentation retains value as it consistently improves performance
across varied test scenarios. A promising next step is to extend the
tokenization over time. Recent work on generating human mo-
tion from text exploits tokenized representations of human mo-
tions [50]. Looking further ahead, an intriguing direction for fu-
ture research involves exploring the application of our token-based
pose representation with Large Language Models (LLMs). The
discrete, robust nature of our pose tokens, designed for 3D human
pose estimation, presents an opportunity to bridge the gap between
computer vision and natural language processing.
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